Multiple Sclerosis Resource Centre
  • Home
  • MSRC Grand Opening 30/05/12
  • About MS
  • MSRC Services
  • Get Involved
  • MS Research News
  • MSRC Groups
  • Useful Resources
  • Welcome To Josephs Court, MS Centre Of Excellence
  • Advertising
  • Best Bet Diet Group
  • E-Newsletter
  • Contact Us
  • Investor in People
    You are here : Home » MS Research News » New Discoveries » CXCL1, 7, 12

    CXCL1, 7, 12

    A A A
    [Print this page]

    Share |


    Scientists block multiple sclerosis in mouse model

    Immune CellsResearchers at the Washington University School of Medicine have managed to block the development of multiple sclerosis-like symptoms using a mouse model of the disease.

    When scientists gave mice a drug that suppressed the activity of a key molecule, immune cells lined up at the boundaries of the spine instead of going in. Scientists have blocked harmful immune cells from entering the brain in mice with a condition similar to multiple sclerosis (MS).

    It is important because MS is apparently caused by misdirected immune cells that enter the brain and damage myelin-an insulating material on the branches of neurons that conduct nerve impulses, said researchers.

    "The results were so dramatic that we ended up producing early evidence that this compound might be helpful as a drug for MS. The harmful immune cells were unable to gain access to the brain tissue, and the mice that received the highest dosage were protected from disease," said Robyn Klein.

    Klein and her colleagues discovered a chemical stairway that immune cells have to climb down to enter the brain. Immune cells that exit the blood remain along the vessels on the tissue side, climbing down from the meninges into the brain where they can then cross additional barriers and attack myelin on the branches of neurons.

    "The effect of immune cell entry into the brain depends on context. In the case of viral infection, immune cell entry is required to clear the virus. But in autoimmune diseases like multiple sclerosis, their entry is associated with damage so we need to find ways to keep them out," said Klein.

    The stairway is located on the tissue side of the microvasculature, tiny vessels that carry blood into the central nervous system. The steps are made of a molecule called CXCL12 that localizes immune cells, acting like stairs that slow them down so that they can be evaluated to determine if they are allowed to enter the brain.

    Klein's lab previously discovered that the blood vessel cells of the microvasculature display copies of this molecule on their surfaces.

    Klein also found that MS causes CXCL12 to be pulled inside blood vessel cells in humans and mice, removing the stairway's steps and the checkpoints they provide.

    In the new paper, she showed that blocking the internalization of the molecule prevented immune cells from getting into the brain and doing harm.

    Work by another lab called Klein's attention to CXCR7, a receptor that binds to CXCL12. She showed that the receptor is made by the same cells in the microvasculature that display CXCL12. They watched the receptor take copies of CXCL12 and dump them in the cells' lysosomes, pockets for breakdown and recycling of molecules the cell no longer needs.

    Klein contacted researchers at ChemoCentryx, who were developing a blocker of the CXCR7 receptor as a cancer treatment. When they gave it to the mouse model of MS, immune cells stopped at the meninges.

    The findings have been published in The Journal of Experimental Medicine.

    Source: DailyIndia.com Copyright Asian News International/DailyIndia.com (08/03/11)

    Immune molecule decreases severity of Multiple Sclerosis-like disease in mice

    cxcl1 image

    A group led by Dr. Cedric Raine at Albert Einstein College of Medicine have explored the expression of an immune molecule (CXCL1) that interacts with myelin-producing cells, finding that CXCL1 decreases the severity of disease in a mouse model of multiple sclerosis (MS).

    The autoimmune disease multiple sclerosis (MS) attacks the central nervous system, resulting in demyelination of neurons. Myelin-producing cells in the central nervous system are severely depleted in lesions in patients with MS.

    Myelin-producing cells express immune receptors and have been shown to respond to the immune molecule CXCL1, although the role of CXCL1 in MS has not been previously explored. Dr. Raine and colleagues examined the effects of CXCL1 specifically expressed in the nervous system in a mouse model of MS. They observed decreased severity of disease and more prominent remyelination in these mice. CXCL1, therefore, may play a neuroprotective role in CNS autoimmune demyelination.

    In future studies, Dr. Raine's group plans to determine how CXCL1 mediates protection in MS. "Exploration of these pathways affords novel therapeutic avenues to enhance the limited remyelination typically seen in MS."

    Source: ScienceDaily © 1995-2008 ScienceDaily LLC (31/12/08)

    Related Items
    Abnormal Liver Tests and MS
    AlphaB-crystallin
    Aluminium and Multiple Sclerosis
    Antagonist compounds
    Antibodies, B Cells,T-Cell Activation, Immune Response
    Apolipoprotein D
    Bacteria & MS
    Biomarkers and MicroRNA
    Blood tests
    Bone Marrow Cells and MS Treatment
    Bowmann-Birk Inhibitor Concentrate (BBIC)
    Brain Atrophy, Lesion Loads, White and Grey Matter
    Brain Inflammation
    Brain Iron Deposits
    Calcium Binding Proteins
    Cerebro-Spinal Fluid & Spinal Cord
    Chronic Cerebrospinal Venous Insufficiency (CCSVI)
    CRMP-2
    Cytokines & Chemokines
    Dendritic Cells
    Estrogen Receptors
    Fibrinogen, Mac-1 and Microglia
    HDL
    HERV-Fc1
    Histamine and MS
    Hormones And MS Research
    Immunoglobulins
    Infections and Multiple Sclerosis Relapses
    Interleukin-1beta
    JAK-STAT inhibitors
    Kallikrein 6
    Lipids & MS
    Medical Imaging
    Mycoplasmas And Bacteria
    N-acetylglucosamine (GlcNAc) & Glucosamine
    Natural Interferon Beta
    Natural Killer Cells
    Nerve and Brain Cell Research
    Neurosteroids
    Olig 1 Gene Discovery
    Oligodendrocytes and Astrocytes
    Pesticides and Multiple Sclerosis
    PKC-theta
    Plasma Exchange
    Potential Viral Causes of MS
    Proteomics
    Recombinant Human Erythropoietin
    Regeneration Research
    RNA and RNAi
    Synthetic Small Molecules
    Technology
    Tetanus Vaccine and Possible MS Protection
    Tetramers
    The Blood Brain Barrier
    Tremors And MS
    Uric Acid
    Urinary Problems
    Vascular Function And MS
    Vision and MS


    Did you find this information useful? Would you like to comment on this page? Let us know what you think! We welcome all comments and feedback on any aspect of our website - please click here to contact us.