Multiple Sclerosis Resource Centre
  • Home
  • MSRC Grand Opening 30/05/12
  • About MS
  • MSRC Services
  • Get Involved
  • MS Research News
  • MSRC Groups
  • Useful Resources
  • Welcome To Josephs Court, MS Centre Of Excellence
  • Advertising
  • Best Bet Diet Group
  • E-Newsletter
  • Contact Us
  • Investor in People
    You are here : Home » MS Research News » New Discoveries » Apolipoprotein D

    Apolipoprotein D

    A A A
    [Print this page]

    Share |


    Protein that may protect against Multiple Sclerosis

    Apolipoprotein D

    Research on the mechanisms involved in neurodegenerative diseases such as Alzheimer's, stroke, dementia, Parkinson's and multiple sclerosis, to name a few, has taken a step forward thanks to the work of biological sciences Ph.D. student Sonia Do Carmo, supervised by Professor Éric Rassart of the Université du Québec à Montreal (UQAM) Biological Sciences Department, in collaboration with researchers at the Armand-Frappier Institute and the University of Valladolid in Spain.

    Do Carmo and her collaborators have successfully demonstrated the protective and reparative role of apolipoprotein D, or ApoD, in neurodegenerative diseases. Their discovery suggests interesting avenues for preventing and slowing the progression of this type of illness.

    These studies were inspired by work done ten years ago by Professor Rassart's team, who then discovered increased levels of ApoD in the brains of people with several types of neurodegenerative disorders, including Alzheimer's. The team hypothesized that this protein might play a protective and restorative role but were unable to demonstrate this at the time.

    The experiments

    To establish the protective and reparative role of ApoD, the researchers used two types of genetically modified mice: one type with increased levels of ApoD in the brain and a second type with no ApoD. The mice were then exposed to neurodegenerative agents. A group of the modified mice and a control group (unmodified) were exposed to paraquat, a widely used herbicide that has been shown to increase the risk of Parkinson's.

    Then the same type of experiment was performed by injecting two groups with a virus that causes encephalitis. In both cases, the mice modified for increased levels of ApoD had the best outcomes, with a better ability to combat the diseases and a higher survival rate than the unmodified mice. The knockout mice with no ApoD displayed the poorest outcomes. These experiments serve to illustrate the protective and reparative role of this protein.

    When can we expect medication?

    A number of steps remain before this research can translate into effective drugs against neurodegenerative conditions. The original investigator, Professor Éric Rassart, explains, “You cannot simply inject ApoD, as it has to enter the brain in order for it to be active. We have successfully demonstrated the role of ApoD, but now we need to understand the action of this protein. Only then will we be able to think about creating a drug to prevent these types of diseases and to slow their progression. All the same, this discovery by Sonia Do Carmo and her collaborators is a significant breakthrough, as we know very little about the mechanisms of neurodegenerative diseases.”

    The discovery has aroused considerable interest among the molecular biology community. Two major scientific journals have already published the research findings: Aging Cell (Vol. 7: 506-515, 2008) and Journal of Neuroscience (Vol. 28: 10330-10338, 2008).

    Source: Science Daily © 1995-2009 ScienceDaily LLC (07/01/08)

    Related Items
    Abnormal Liver Tests and MS
    AlphaB-crystallin
    Aluminium and Multiple Sclerosis
    Antagonist compounds
    Antibodies, B Cells,T-Cell Activation, Immune Response
    Bacteria & MS
    Biomarkers and MicroRNA
    Blood tests
    Bone Marrow Cells and MS Treatment
    Bowmann-Birk Inhibitor Concentrate (BBIC)
    Brain Atrophy, Lesion Loads, White and Grey Matter
    Brain Inflammation
    Brain Iron Deposits
    Calcium Binding Proteins
    Cerebro-Spinal Fluid & Spinal Cord
    Chronic Cerebrospinal Venous Insufficiency (CCSVI)
    CRMP-2
    CXCL1, 7, 12
    Cytokines & Chemokines
    Dendritic Cells
    Estrogen Receptors
    Fibrinogen, Mac-1 and Microglia
    HDL
    HERV-Fc1
    Histamine and MS
    Hormones And MS Research
    Immunoglobulins
    Infections and Multiple Sclerosis Relapses
    Interleukin-1beta
    JAK-STAT inhibitors
    Kallikrein 6
    Lipids & MS
    Medical Imaging
    Mycoplasmas And Bacteria
    N-acetylglucosamine (GlcNAc) & Glucosamine
    Natural Interferon Beta
    Natural Killer Cells
    Nerve and Brain Cell Research
    Neurosteroids
    Olig 1 Gene Discovery
    Oligodendrocytes and Astrocytes
    Pesticides and Multiple Sclerosis
    PKC-theta
    Plasma Exchange
    Potential Viral Causes of MS
    Proteomics
    Recombinant Human Erythropoietin
    Regeneration Research
    RNA and RNAi
    Synthetic Small Molecules
    Technology
    Tetanus Vaccine and Possible MS Protection
    Tetramers
    The Blood Brain Barrier
    Tremors And MS
    Uric Acid
    Urinary Problems
    Vascular Function And MS
    Vision and MS


    Did you find this information useful? Would you like to comment on this page? Let us know what you think! We welcome all comments and feedback on any aspect of our website - please click here to contact us.